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Abstract
We consider instabilities of two-component Tomonaga–Luttinger (TL) liquids
for the one-dimensional extended Hubbard model in a magnetic field. When
the density of electrons with spin σ is 1/2, electrons with spin σ tend to occupy
every other site, and do not conduct. The instability stems from the umklapp
scattering between same-spin electrons. But for the remaining electrons with
spin −σ , an energy gap does not appear. We also consider the instability relating
to the phase separation. This relates to the intrinsic stability condition of the
TL liquid.

1. Introduction

For several one-dimensional (1D) quantum systems, the long wavelength behaviour is
described by the Tomonaga–Luttinger (TL) liquid [1–9]. Elementary excitations are the sound
wave relating to the density fluctuation and topological excitations. Correlation functions at
T = 0 decay by a power law, and exponents of them change continuously with the strength of
the interaction.

The 1D Hubbard model can be recognized as a two-component TL liquid. In zero external
magnetic field this model has a U(1) × SU(2) symmetry. The U(1) symmetry relates to the
charge freedom and the SU(2) to the spin one, and the velocities of collective sound wave
excitations are different between these freedoms. Except for the half-filling case, properties
of the two-component TL liquid remain at the strong coupling limit [10–14]. In a magnetic
field, the symmetry of the model reduces to a U(1)×U(1) symmetry and we cannot expect the
independent collective excitations relating to the charge and spin freedoms. Woynarovich [15]
calculated the finite-size ground-state energy and excitation spectrum with a Bethe ansatz
(BA) [16]. He analysed them with conformal field theory [17–20] and showed the tower
structure of scaling dimensions in excitation energies and the central charge of the Virasoro
algebra in the ground state energy. With a finite-size spectrum from the BA calculation and
conformal field theory, Frahm and Korepin [14, 21] (see also [22]) derived the form of the
correlation function and critical exponents. According to them [14, 15, 21], the low-energy
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behaviour for the non-half-filling case is that of two TL liquids. Ogata et al [23] calculated the
momentum distribution function with a finite-size BA wavefunction for the large U/t limit.
The position of the singularity of these functions is related to kF±, as for the non-interacting
case. Penc and Sólyom [24] studied the model in relation to the g-ology and calculated the
correlation functions of electrons for the general multi-componentcase with a Ward–Takahashi
identity.

In this paper, we study the instability of the 1D extended Hubbard model in a magnetic
field. We can recognize the system as the (asymmetrically) coupled TL liquid. Due to the
nearest neighbour interaction, two instabilities can appear. One instability stems from the
umklapp scattering between electrons with the same spin. The other one relates to the phase
separation. We consider these instabilities for coupled TL liquids.

The organization of this paper is as follows. In the next section, we present the model.
In section 3, we present the effective model with the bosonization approach. In these two
sections, we see that, in a magnetic field, the umklapp scattering with same-spin electrons can
develop an excitation gap. Section 4 gives the correlation function of the phase field defined
in section 3 for the free field case. In section 5, we consider the instability and properties of
the system. The last section is devoted to a summary and discussion.

2. Model

The Hamiltonian of the 1D extended Hubbard model in a uniform magnetic field is given by

H = −t
∑
σ=±

L∑
j=1

(c†
j,σ c j+1,σ + c†

j+1,σ c j,σ ) + U
L∑

j=1

n j,+n j,−

+ V
L∑

j=1

(n j,+ + n j,−)(n j+1,+ + n j+1,−) − h

2

L∑
j=1

(n j,+ − n j,−), (1)

where L is the system size, c j,σ and c†
j,σ are the annihilation and the creation operator of the

electron at the j th site with spin σ = ±, n j,σ = c†
j,σ c j,σ is the number of electrons with

spin σ at the j th site, U and V are the on-site and the nearest neighbour interactions and
h is proportional to an external magnetic field. We assume the periodic boundary condition
c j+L ,σ = c j,σ . For h = 0, several studies have been done and phase diagrams for several
electron densities were obtained [25–36].

After the Fourier transformation of the free part:

Hfree = −t
∑
σ=±

L∑
j=1

(c†
j,σ c j+1,σ + c†

j+1,σ c j,σ ) − h

2

L∑
j=1

(n j,+ − n j,−),

c j,σ = 1√
L

∑
k

eik j ck,σ , k = −π +
2π

L
,−π + 2

2π

L
, . . . , π,

(2)

we have

Hfree =
∑
σ=±

∑
k

[
−2t cos kc†

k,σ ck,σ − σ
h

2
c†

k,σ ck,σ

]
. (3)

In a magnetic field, the Fermi wavenumber kF+ for the σ = + spin electron and kF− for the
σ = − spin electron are not the same. Thus the Fermi velocities vF+ for σ = + fermion and
vF− for σ = − are different.

On introducing the nearest neighbour interaction V , umklapp scattering between two
electrons with the same spin σ appears. Due to the commensurability, this umklapp scattering
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process is important for the case where the filling of the electrons with spin σ is nσ = 1/2, and
there is a possibility of an instability appearing for the TL liquid. The instability is the same
as the metal–insulator transition of the lattice spinless fermion at half filling (

∑
j c†

j c j = L/2)

H = −t
L∑

j=1

(c†
j c j+1 + c†

j+1c j) + V
L∑

j=1

n j n j+1. (4)

For the weak coupling case −2t < V < 2t , the low energy physics is described by the TL
liquid. But for the strong coupling case 2t < V , fermions tend to occupy every other site
and the system is an insulator. This instability of the TL liquid comes from the umklapp
scattering [7]. For the extended Hubbard model (1), when nσ = 1/2, it is expected that the
same thing occurs for electrons with spin σ due to the nearest neighbour interaction. The
possibility of this instability can be derived from the argument of Yamanaka et al [37] (see
also [38]). Even for the TL liquid system, a Fermi wavenumber kFσ exists and depends on the
density of fermions. The instability relates to the condition whether the momentum transfer
of the umklapp scattering process between Fermi wavenumbers matches the reciprocal lattice
vector or not.

Let us consider where this instability of the extended Hubbard model can occur. We
define the electron density as n = n+ + n− and the magnetization density m for n < 1 as
m = (n+ − n−)/(n+ + n−), and for 1 < n as m = (n+ − n−)/(2 − n+ − n−). These
magnetization densities are normalized to 1 for the saturation magnetization. In the region
1/2 < n < 1, the density of electrons with σ = + can be n+ = 1/2. For this density, the
magnetization density is written as

m = 1 − n

n
. (5)

In the region 1 < n < 3/2, the density of electrons with σ = − can be n− = 1/2. In this
case, the magnetization density is given by

m = n − 1

2 − n
. (6)

Thus for these magnetizations (5) and (6), the above-mentioned instability can occur. After a
transformation c j,σ → (−1) j−1c†

j,−σ , we have

n → 2 − n, m → m, (7)

and invariant U , V , h in the Hamiltonian. Thus two systems with densities (n, m) and (2−n, m)

show the same properties, and two lines (5) and (6) are symmetric for the line n = 1. (On
these lines, we should exclude the point n = 1, m = 0, because another type of instability
occurs at this point [25, 27, 28, 30, 31, 35, 36].)

Another instability of the one-component model (4), phase separation, appears in the
region V < −2t . This comes from violation of the intrinsic stability condition of the TL
liquid. This type of instability can also appear in the model (1).

3. Bosonization

In order to consider the instability, we use the bosonization approach. We linearize the
dispersion of the single electron around the Fermi point and the electron operator is written as

cx,σ = √
a(e−ikFσ xψLσ (x) + eikFσ xψRσ (x)), (8)

where a is the short-range cut-off. The operator ψLσ (x) is the annihilation operator for the
left-moving fermion and ψRσ (x) for the right-moving fermion with spin σ . Introducing the
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phase field φσ and θσ , which satisfy the relation [φσ (x), θσ ′(x ′)] = −δσ,σ ′ i(π/2) sgn (x − x ′),
fermion operators are written as [4, 5, 8]

ψLσ (x) = 1√
2πa

exp

(
i

1√
2
φσ + i

√
2θσ

)
,

ψRσ (x) = 1√
2πa

exp

(
−i

1√
2
φσ + i

√
2θσ

)
.

(9)

Then we have the following bosonized Hamiltonian:

H = H0 −
∑
σ=±

gσ

∫
dx

2π
cos(2

√
2φσ − 2(π − 2kFσ )x − 2kFσ ) (10)

where gσ = 4V/πa. Here we neglected the backscattering term and the umklapp scattering
term involving different spin electrons. (The former is crucial for generating a spin gap in
zero magnetic field [39] and the latter is important for the metal–insulator transition at half-
filling [40].)

The last term of equation (10) comes from the umklapp scattering between electrons
with the same spin, and for its oscillating nature with x , it is important only for kσ = π/2
(nσ = 1/2). The first term of equation (10) is given by

H0 =
∫

dx

2π

∑
σ,σ ′=±

[
v0σσ ′(π�σ )(π�σ ′) + v1σσ ′

(
∂φσ

∂x

)(
∂φσ ′

∂x

)]
, (11)

where �σ is the momentum density conjugate to φσ , [φσ (x),�σ ′(x ′)] = i δσσ ′δ(x − x ′), and
this is given by π�σ = ∂θσ/∂x . v0σσ ′ and v1σσ ′ have the dimension of the velocity and are
elements of the following symmetric matrix:

v0 =
[

2vF+ + 2V a cos 2kF+
π

0

0 2vF− + 2V a cos 2kF−
π

]
, (12)

v1 =
[ 1

2vF+ + (2−cos 2kF+)V a
2π

(U+2V )a
2π

(U+2V )a
2π

1
2vF− + (2−cos 2kF−)V a

2π

]
. (13)

These matrices are only valid for the first order of U and V . For zero field case h = 0, we
have kF+ = kF− and vF+ = vF−. In this case, matrices v0 and v1 commute, and there are
eigenvectors for both matrices v0 and v1, corresponding to the separation of the charge and the
spin parts. But, in general, for h �= 0 we cannot diagonalize v0 and v1 simultaneously.

From the canonical equation, we obtain
∂φσ

∂ t
=

∑
σ ′=±

v0σσ ′π�σ ′ =
∑
σ ′=±

v0σσ ′
∂θσ ′

∂x
,

∂θσ

∂ t
=

∑
σ ′=±

v1σσ ′
∂φσ ′

∂x
,

(14)

and we have the Lagrangian density

L = 1

2π

∑
σσ ′

[
(v−1

0 )σσ ′

(
∂φσ

∂ t

)(
∂φσ ′

∂ t

)
− v1σσ ′

(
∂φσ

∂x

)(
∂φσ ′

∂x

)]

+
∑
σ=±

gσ

2π
cos

(
2
√

2φσ − 2(π − 2kFσ )x − 2kFσ

)
. (15)

In the analysis, we use the following parameters for convenience:

w2
0 = det v0 = v0++v0−− − v2

0+−,

w2
1 = det v1 = v1++v1−− − v2

1+−,

w2
2 = tr v0v1 = v0++v1++ + v0−−v1−− + 2v0+−v1+−.

(16)
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4. Correlation functions of phase fields

Before considering the instability of the model (10), we calculate the correlation function for
g± = 0 in the thermodynamic limit L → ∞. With the diagonalization of the two-component
Hamiltonian (11), we can calculate the correlation function of the phase field [41–43]. But here
we calculate it with the Lagrangian, aiming for an extension to the general multi-component
case.

In order to stabilize the TL liquid, we need the condition such that the eigenvalues of v0

and v1 should be positive, so that

w2
0 > 0, w2

1 > 0, (17)

and we assume this. If this condition is violated, the TL liquid is unstable. Due to the
transformation (7), we consider the case 1/2 < n < 1. In Euclidean space-time t = −iτ (τ is
the imaginary time), the free part of the Lagrangian density is written as

L0 = 1

2π

∑
σσ ′

[
(v−1

0 )σσ ′

(
∂φσ

∂ t

)(
∂φσ ′

∂ t

)
+ v1σσ ′

(
∂φσ

∂x

)(
∂φσ ′

∂x

)]
. (18)

The correlation function of φσ for this free Lagrangian is given by


φφ(τ1 − τ2, x1 − x2) =
( 〈φ+(τ1, x1)φ+(τ2, x2)〉0 〈φ+(τ1, x1)φ−(τ2, x2)〉0

〈φ−(τ1, x1)φ+(τ2, x2)〉0 〈φ−(τ1, x1)φ−(τ2, x2)〉0

)

= π

∫ ∞

−∞
dω

2π

∫ π/a

−π/a

dk

2π
e−iωτ12+ikx12

[
(v−1

0 )ω2 + v1
2 − 2 cos ka

a2

]−1

, (19)

where we used the notation τ12 = τ1 − τ2 and x12 = x1 − x2. From the direct calculation, we
obtain the explicit form of the correlation function:


φφ
σ1σ2

(τ12, x12) = 〈φσ1(τ1, x1)φσ2(τ2, x2)〉0 = 1
2

∑
σ̄=±

K σ̄
σ1σ2

�σ̄ (τ12, x12), (20)

where

K σ̄
σ1σ2

= σ̄√
w4

2 − 4w2
0w

2
1

[uσ̄ v0σ1σ2 − w0w1u−σ̄ (v−1
1 )σ1σ2 ] (21)

uσ̄ = 1
2

(√
w2

2 + 2w0w1 + σ̄

√
w2

2 − 2w0w1

)
(22)

�σ̄ (τ12, x12) = 2π

uσ̄

∫ ∞

−∞
dω

2π

∫ π/a

−π/a

dk

2π

e−iωτ+ikx

(ω/uσ̄ )2 + (2 − 2 cos ka)/a2
. (23)

Here, we assume v0+v1+ > v0−v1− corresponding to kF+ > kF− (n+ > n−).
Formally equation (20) is derived as follows. Equation (19) can be rewritten as


φφ(τ12, x12) = πv1/2
0

∫ ∞

−∞
dω

2π

∫ π/a

−π/a

dk

2π
e−iωτ12+ikx12

[
ω2 + v1/2

0 v1v1/2
0

2 − 2 cos ka

a2

]−1

v1/2
0 .

We diagonalize the matrix v1/2
0 v1v1/2

0 with an orthogonal matrix O as

Ov1/2
0 v1v1/2t

0 O = u2, (24)

where tO is the transpose of the matrix O and u is a diagonal matrix diag (u+, u−) with positive
elements u± > 0. Then we have


φφ(τ12, x12) = 1
2 v1/2t

0 Ou−1�(τ12, x12)Ov1/2
0 , (25)
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where

�(τ12, x12) = diag(�+(τ12, x12), �−(τ12, x12)), (26)

and �σ̄ is given by equation (23). Then we define the matrix Kσ̄ , whose elements are given by

K σ̄
σ1σ2

= (v1/2t
0 O)σ1σ̄ u−1

σ̄ (Ov1/2
0 )σ̄σ2 , (27)

and we obtain equation (20). We can also use another orthogonal transformation Qv1/2
1 v0v1/2t

1

Q = u2, where Q is an orthogonal matrix, and we have K σ̄
σ1σ2

= (v−1/2t
1 Q)σ1σ̄ uσ̄ (Qv−1/2

1 )σ̄σ2 .
The integral of the Green function �σ̄ (23) is infrared divergent and this comes from

�σ̄ (0, 0) = −(1/2) log(π/2L), where L is the system size. But for the subtraction
G σ̄ (τ, x) = �σ̄ (τ, x)−�σ̄ (0, 0), the integral converges. For large

√
(uσ̄ τ )2 + x2 this function

is approximated as

G σ̄ (τ, x) = − ln

√
(uσ̄ τ )2 + x2

r0
, (28)

where r0 = a/4eγ and γ = 0.577 . . . is Euler’s constant.
Using the canonical relation (14), we have the correlation function of θσ as


θθ
σ1σ2

(τ12, x12) = 〈θσ1(τ1, x1)θσ2(τ2, x2)〉0 = 1
2

∑
σ̄

K (−1)σ̄
σ1σ2

�σ̄ (τ12, x12) (29)

K (−1)σ̄
σ1σ2

= (v−1/2t
0 O)σ1σ̄ uσ̄ (Ov−1/2

0 )σ̄σ2 . (30)

Matrices K(−1)σ̄ , whose elements are K (−1)σ̄
σ1σ2

and Kσ̄ , are constructed from the velocity matrices
v0 and v1, so that we express them as K(−1)σ̄ = K(−1)σ̄ (v0, v1) and Kσ̄ = Kσ̄ (v0, v1). Then
from the canonical relation (14), we have a relation K(−1)σ̄ (v0, v1) = Kσ̄ (v1, v0). With
equation (21), this gives the explicit form of K(−1)σ̄ . Conversely, we can express v0 and v1

with uσ̄ , Kσ̄ and K(−1)σ̄ as

v0 =
∑
σ̄=±

uσ̄ Kσ̄ , v−1
0 =

∑
σ̄=±

u−1
σ̄ K(−1)σ̄ ,

v−1
1 =

∑
σ̄=±

u−1
σ̄ Kσ̄ , v1 =

∑
σ̄=±

uσ̄ K(−1)σ̄ .
(31)

From equations (27) and (30), matrices Kσ̄ and K(−1)σ̄ satisfy the relation∑
σ̄=±

Kσ̄ K(−1)σ̄ =
∑
σ̄=±

K(−1)σ̄ Kσ̄ = 1

(where 1 is the unit matrix) and∑
σ1,σ2=±

K σ̄
σ1σ2

K (−1)σ̄ ′
σ2σ1

=
∑

σ1,σ2=±
K (−1)σ̄

σ1σ2
K σ̄ ′

σ2σ1
= δσ̄ σ̄ ′ . (32)

Lastly, using equation (14) the correlation function between φ and θ is calculated as


φθ
σ1σ2

(τ12, x12) = 〈φσ1(τ1, x1)θσ2(τ2, x2)〉0 = − i

2

∑
σ̄=±

L σ̄
σ1σ2

arg(uσ̄ τ12 + ix12), (33)

L σ̄
σ1σ2

= (v1/2t
0 O)σ1σ̄ (Ov−1/2

0 )σ̄σ2 . (34)

The matrix Lσ̄ , whose elements are L σ̄
σ1σ2

, satisfies Lσ̄ = Kσ̄ K(−1)σ̄ and
∑

σ̄ Lσ̄ = 1.
Determinants of the matrices Kσ̄ , K(−1)σ̄ and Lσ̄ are zero.
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According to [14, 15, 21, 23, 24], the low energy property of the system is shown as two
independent TL liquids. Let us derive such expressions in our formulation. We define new
fields:

ϕLσ̄ =
∑
σ=±

[u1/2
σ̄ (Ov−1/2

0 )σ̄σφσ + u−1/2
σ̄ (Ov1/2

0 )σ̄σ θσ ],

ϕRσ̄ =
∑
σ=±

[−u1/2
σ̄ (Ov−1/2

0 )σ̄σ φσ + u−1/2
σ̄ (Ov1/2

0 )σ̄σ θσ ].
(35)

Then from the relation [φσ (x), θσ ′(x ′)] = −δσ,σ ′ i(π/2) sgn (x − x ′), we can see

[ϕLσ̄ (x), ϕLσ̄ ′(x ′)] = −iπδσ̄ σ̄ ′sgn (x − x ′),
[ϕRσ̄ (x), ϕRσ̄ ′(x ′)] = iπδσ̄ σ̄ ′sgn (x − x ′),
[ϕLσ̄ (x), ϕRσ̄ ′(x ′)] = 0.

Thus these fields are independent. Then we define the current operator as

JLσ̄ = i
1

2

(
1

uσ̄

∂

∂τ
− i

∂

∂x

)
ϕLσ̄ , JRσ̄ = i

1

2

(
1

uσ̄

∂

∂τ
+ i

∂

∂x

)
ϕRσ̄ , (36)

whose correlation functions are

〈JLσ̄ (τ1, x1)JLσ̄ ′(τ2, x2)〉0 = δσ̄ σ̄ ′
1

(uσ̄ τ12 + ix12)2
,

〈JLσ̄ (τ1, x1)JRσ̄ ′(τ2, x2)〉0 = 0,

〈JRσ̄ (τ1, x1)JRσ̄ ′(τ2, x2)〉0 = δσ̄ σ̄ ′
1

(uσ̄ τ12 − ix12)2
.

(37)

Using these operators, the free Lagrangian (18) and Hamiltonian densities (11) can be written
as

L0 = − 1

2π

∑
σ̄=±

uσ̄ JLσ̄ JRσ̄ , H0 = 1

2π

∑
σ̄=±

uσ̄

2
(JLσ̄ JLσ̄ + JRσ̄ JRσ̄ ). (38)

Thus these are composed of two independent parts of σ̄ = ±. uσ̄ is the sound velocity of
each part and these are equivalent to vF± for the non-interacting case U = V = 0. Due to the
condition (17), sound velocities u± are real.

The extension of the above procedure to general multi-component TL liquids [22, 24] is
straightforward. For the N-component case, we have N × N velocity matrices v0 and v1, and
we obtain N sound velocities uσ̄ . Comparing the scaling dimensions of scaling operators, we
obtain the dressed charge matrix of [22] as

Z = 1√
2

v1/2t
0 Ou−1/2

(
= 1√

2
v−1/2t

1 Qu1/2

)
. (39)

Elements of matrices Kσ̄ , K(−1)σ̄ and Lσ̄ are described as
K σ̄

σ1σ2
= 2Zσ1σ̄ (tZ)σ̄σ2 ,

K (−1)σ̄
σ1σ2

= 1
2 (tZ−1)σ1σ̄ (Z−1)σ̄σ2 ,

L σ̄
σ1σ2

= Zσ1σ̄ (Z−1)σ̄σ2 , σ1, σ2, σ̄ = 1, . . . , N.

(40)

We define the matrices u, Kσ̄ , K(−1)σ̄ and Lσ̄ from v0 and v1. Among N(N + 1) independent
elements of v0 and v1, we have N sound velocities uσ̄ and the number of independent elements
of the matrices Kσ̄ , K(−1)σ̄ and Lσ̄ is N2, the dimension of the matrix Z. Equations (35) are
written as

ϕLσ̄ =
∑

σ

(
1√
2
(Z−1)σ̄σ φσ +

√
2(tZ)σ̄σ θσ

)
,

ϕRσ̄ =
∑

σ

(
− 1√

2
(Z−1)σ̄σ φσ +

√
2(tZ)σ̄σ θσ

)
.

(41)
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For the Hubbard model, another type of dressed charge matrix is defined in relation to the
charge and spin freedoms. For the matrix of [14, 21], we obtain

Z =
(

Zcc Zcs

Zsc Zss

)
= 1√

2

(
1 1
0 1

)
v1/2t

0 Ou−1/2. (42)

5. Instability

Using equations (20), (29), and (33), we can calculate the correlation functions of several
operators. The element of matrices Kσ̄ and K(−1)σ̄ gives exponents of them. In the calculation,
we must take into account the charge neutrality condition of the Coulomb gas [44] due to the
infrared divergence of �σ̄ (0, 0). From equation (20), the correlation function of the operator
cos 2

√
2φ+, which generates the umklapp scattering between two electrons with spin + for

n+ = 1/2 (see equations (10) and (15)), is given by

2〈cos 2
√

2φ+(τ1, x1) cos 2
√

2φ+(τ2, x2)〉0 = exp

(
4

∑
σ̄=±

K σ̄
++G σ̄ (τ12, x12)

)

=
(

r2
0

(u+τ12)2 + x2
12

)2K +
++
(

r2
0

(u−τ12)2 + x2
12

)2K −
++

. (43)

Thus the scaling dimension of the operator cos 2
√

2φ+ is

x = 2K +
++ + 2K −

++ = 2
v0++ + w0w1(v

−1
1 )++√

w2
2 + 2w0w1

. (44)

From the scaling argument, when the scaling dimension x is greater than 2 and kF+ = π/2,
the operator cos 2

√
2φ+ is irrelevant and the coupling g+ in equation (10) is renormalized to

zero. The other independent scaling parameters u+, u−, K +
++, K +

+−, K −
−−, K −

+− are renormalized
to finite values. Thus the low energy property of the system is of two TL liquids.

When x < 2 and kF+ = π/2, the operator cos 2
√

2φ+ is relevant. In this case, the coupling
g+ is renormalized to infinity and elements K σ̄

+,+ and K σ̄
+,− (σ̄ = ±) are renormalized to zero.

The phase field φ+ is locked as φ+ = π/2
√

2 or 3π/2
√

2. Since the density operator of
electrons with spin σ = + is written as

c†
x+cx+ = 1

πa
sin(

√
2φ+ − 2kF+x) − 1√

2π

∂φ+

∂x
+ n+, (45)

electrons with σ = + occupy every other site. There exists an excitation gap for these electrons.
Electrons with σ = − feel a potential from this crystal of σ = + electrons. But in our
considered order of U and V , there is no mechanism for generating a gap for σ = − electrons
because of the incommensurability kF− < π/2. The low energy physics is described by the
one-component TL liquid with the freedom of electrons with spin σ = −. Due to a gap for
σ = + electrons, there is a magnetic gap, and this means that there can exist a magnetization
plateau in the magnetization curve at m = (1 − n)/n. Although there is a magnetic gap, the
system is not an insulator but a conductor, relating to σ = − fermions. This instability is in
the context of the generalized Luttinger theorem [37].

Using the weak coupling parameter (12) and (13), we calculate the line x = 2 of
equation (44) for the system with n+ = 0.5, n− = 0.2 and with n+ = 0.5, n− = 0.3 in
figure 1. We can see that, for large V , the above instability can appear. Since equations (12)
and (13) are valid for small U and V , figure 1 shows only the tendency of the boundary.

In the previous section, we assumed the condition (17) which is needed for the stability
of the TL liquid. Here we consider the limit w0,1 → +0. For the one-component case,
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Figure 1. Boundary between the one-component and two-component TL liquids for n+ = 0.5,
n− = 0.2 and for n+ = 0.5, n− = 0.3.

an instability of phase separation appears in the limit uK → finite and u/K → 0 [45]. Let
us consider the case that one eigenvalue of v1 approaches to zero. In general, w2

1 goes to zero
linearly for the coupling parameters U and V . From equation (22), near w1 = 0 we have

u+ ≈ w2, u− ≈ w0w1

w2
. (46)

Thus u− goes to zero as u− ∝
√

w2
1. From equation (21) we can also see that K −

σ1σ2
∝ 1/

√
w2

1,

K (−1)−
σ1σ2

∝
√

w2
1. These vanishing and divergence behaviours are the same as in the one-

component case [45]. When w2
1 becomes negative, phase separation into two regions with

different densities of electrons appears as for the one-component case. We can expect the
appearance of the phase-separated state in negative large V regions. The magnetization
behaviours between the normal two-component TL liquid and the phase-separated system
are different. Thus we can expect that there exists a cusp in the magnetization curve at the
boundary of the normal and phase-separated regions.

Next let us look at the limit w2
0 → +0. In this case, with the same calculation for the limit

w2
1 → 0, we obtain u− ∝

√
w2

0, K −
σ,σ ′ ∝

√
w2

0 and K (−1)−
σ,σ ′ ∝ 1/

√
w2

0. If w2
0 were negative,

numbers of the left moving and right moving fermions would be different in the ground state,
and spontaneous electron currents could appear. I think that the limit w2

0 → +0 would not be
realized for finite U and V in the model under consideration.

6. Summary and discussion

We studied the instability of the 1D extended Hubbard model in a magnetic field. For this
model, an instability can appear from the umklapp scattering process between electrons with
the same spin. Considering the commensurability from the density n+ and n−, we saw
that this instability can occur for the magnetization m = (1 − n)/n for 1/2 < n < 1 and
m = (n −1)/(2−n) for 1 < n < 3/2. A magnetization plateau can exist in the magnetization
curve at this magnetization. In the plateau region, the system is not an insulator but metallic.

In the analysis, we used the bosonization calculation. The U(1) × U(1) symmetry of the
system is crucial for the calculation in section 4. In this context, we calculated the correlation
function of the phase field for the free field case and derived sound velocities uσ̄ and matrices
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Kσ̄ and K(−1)σ̄ which give critical exponents. This calculation gives the correspondence
between the bosonization approach and the BA results. The instability from the umklapp
scattering process occurs when kFσ = π/2 and x = ∑

σ̄ K σ̄
σσ = 2 (with renormalized K σ̄

σσ ).
Considering the generation of an excitation gap from the critical gapless system, the quantum
phase transition should be of the Berezinskii–Kosterlitz–Thouless type [46–48].

In the numerical approach for the finite-size system, we can calculate the matrices of the
velocity v0 and v1, and the sound velocity uσ̄ from the excitation energy [8, 14, 15, 21]. (Using
equation (22), we can check the validity of the TL liquid assumption.) Using the finite-size
spectrum, we can calculate the scaling dimension (44) and can estimate crude points where
x = 2.

In the above discussion, we assumed the condition (17), which ensures the stability of
TL liquid for gσ = 0. When these conditions are violated, we can no longer apply the above
analysis to give the density n and magnetization m. In this case, we expect the appearance of
the phase separation. For zero magnetic field h = 0, the phase-separated phase in negative V
regions has been reported [28, 29, 33, 34]. We can expect that this phase remains even for
systems with some finite (or saturated) magnetization.
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